Abstract

In this study, we investigated whether the Agr communication system of the pathogenic bacterium Listeria monocytogenes was involved in adaptation and competitiveness in soil. Alteration of the ability to communicate, either by deletion of the gene coding the response regulator AgrA (response-negative mutant) or the signal pro-peptide AgrD (signal-negative mutant), did not affect population dynamics in soil that had been sterilized but survival was altered in biotic soil suggesting that the Agr system of L. monocytogenes was involved to face the complex soil biotic environment. This was confirmed by a set of co-incubation experiments. The fitness of the response-negative mutant was lower either in the presence or absence of the parental strain but the fitness of the signal-negative mutant depended on the strain with which it was co-incubated. The survival of the signal-negative mutant was higher when co-cultured with the parental strain than when co-cultured with the response-negative mutant. These results showed that the ability to respond to Agr communication provided a benefit to listerial cells to compete. These results might also indicate that in soil, the Agr system controls private goods rather than public goods.

Highlights

  • For the last few decades, communication between bacteria has raised a growing interest

  • We investigated whether the Agr communication system of the pathogenic bacterium Listeria monocytogenes was involved in adaptation and competitiveness in soil

  • DYNAMICS OF LISTERIAL POPULATIONS IN SOIL MICROCOSMS In sterilized soil microcosms, the population of the parental strain L. monocytogenes L9 increased of over 2 log within the first 2 days of incubation and the population remained stable until the end of the experiment (Figure 1)

Read more

Summary

Introduction

For the last few decades, communication between bacteria has raised a growing interest. Cell-to-cell communication is based on the synthesis, the diffusion between cells and the perception of signal molecules. The perception of these molecules in the cell’s extracellular environment induces the regulation of transcription and eventually adjustment of the physiology of the cell to its surrounding environmental conditions. Various communication systems have been described in the prokaryotic world. They differ according to the type of signal molecules and the machinery used to integrate the signal. The communication systems most studied involve cyclic peptides (AIP), acyl-homoserine lactones (acyl-HSL) or auto-inducer-2 (AI-2) as signal molecules (Miller and Bassler, 2001; Reading and Sperandio, 2006; Atkinson and Williams, 2009)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.