Abstract
Alpha 1-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha 1-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha 1b-AR and in Rat-1 fibroblasts stably transfected with the human alpha 1a-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha 1-AR agonists and this effect was fully inhibited by the alpha 1-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha 1-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha 1-ARs with a Ki of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha 1-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha 1-AR activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.