Abstract

Age-related changes in the structure and function of the immune system, collectively termed immunosenescence, result in poor responses to infections, increased susceptibility to cancers and increased incidence of autoimmune diseases. The humoral immune response, maintained by the B cell compartment, has a key role in an effective immune system-not only in producing high affinity antibodies that are crucial for vaccination strategies, but in assisting other components of the immune system in their function. Hence an understanding of B cell immunosenescence in particular is vital in designing strategies to combat the effects of age on immune function. Numerous studies have been undertaken using small animal models in order to understand immunosenescence, and these have contributed greatly to our understanding of the events that underpin impaired immune responses. However, there are key differences between the human and the mouse and a clear understanding of these differences is required when extrapolating from one species to the other. In this article we present an overview of B cell development and summarise current data on age-related B cell changes, at both the population level and at the individual mechanistic level. Areas of similarity and difference between human and mouse models are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.