Abstract

We review five independent techniques that are used to set the distance scale to globular clusters, including subdwarf main-sequence fitting utilizing the recent Hipparcos parallax catalog. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. We now adopt a best-fit value Mv (RR Lyrae stars) = 0.39 ± 0.08 (statistical) at [Fe/H] = -1.9 with an additional uniform systematic uncertainty of -->+ 0.13−0.18. This new distance scale estimate is combined with a detailed numerical Monte Carlo study (previously reported by Chaboyer et al.) designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5 ± 1.3 Gyr, with a one-sided 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ compared to our earlier estimate, owing completely to the new distance scale—a shift which we emphasize results not only from the Hipparcos data. This now provides a lower limit on the age of the universe that is consistent with either an open universe or with a flat matter-dominated universe (the latter requiring H0 ≤ 67 km s-1 Mpc-1). Our new study also explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided that can be used to update our age estimate as improved determinations for various quantities become available. Formulae are also provided that can be used to derive the age and its uncertainty for a globular cluster, given the absolute magnitude of the turnoff or the point on the subgiant branch 0.05 mag redder than the turnoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.