Abstract

The James Webb Space Telescope (JWST) will open a new window into the most distant universe and unveil the early growth of supermassive black holes (BHs) in the first galaxies. In preparation for deep JWST imaging surveys, it is crucial to understand the color selection of high-redshift accreting seed BHs. We model the spectral energy distribution of super-Eddington accreting BHs with millions of solar masses in metal-poor galaxies at z ≳ 8, applying postprocess line transfer calculations to radiation hydrodynamical simulation results. Exposures of 10 ks with the NIRCam and MIRI broadband filters are sufficient to detect the radiation flux from the seed BHs with bolometric luminosities of L bol ≃ 1045 erg s−1. While the continuum colors are similar to those of typical low-z quasars, strong Hα line emission with a rest-frame equivalent width EWrest ≃ 1300 Å is so prominent that the line flux affects the broadband colors significantly. The unique colors, for instance, F356W − F560W ≳ 1 at 7 < z < 8 and F444W − F770W ≳ 1 at 9 < z < 12, provide robust criteria for photometric selection of rapidly growing seed BHs. Moreover, NIRSpec observations of low-ionization emission lines can test whether the BH is fed via a dense accretion disk at super-Eddington rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.