Abstract
Aim Coronavirus disease (COVID-19) ranges from mild clinical phenotypes to life-threatening conditions like severe acute respiratory syndrome (SARS). It has been suggested that early liver injury in these patients could be a risk factor for poor outcome. We aimed to identify early biochemical predictive factors related to severe disease development with intensive care requirements in patients with COVID-19. Methods Data from COVID-19 patients were collected at admission time to our hospital. Differential biochemical factors were identified between seriously ill patients requiring intensive care unit (ICU) admission (ICU patients) versus stable patients without the need for ICU admission (non-ICU patients). Multiple linear regression was applied, then a predictive model of severity called Age-AST-D dimer (AAD) was constructed (n = 166) and validated (n = 170). Results Derivation cohort: from 166 patients included, there were 27 (16.3%) ICU patients that showed higher levels of liver injury markers (P < 0.01) compared with non-ICU patients: alanine aminotrasnferase (ALT) 225.4 ± 341.2 vs. 41.3 ± 41.1, aspartate aminotransferase (AST) 325.3 ± 382.4 vs. 52.8 ± 47.1, lactic dehydrogenase (LDH) 764.6 ± 401.9 vs. 461.0 ± 185.6, D-dimer (DD) 7765 ± 9109 vs. 1871 ± 4146, and age 58.6 ± 12.7 vs. 49.1 ± 12.8. With these finding, a model called Age-AST-DD (AAD), with a cut-point of <2.75 (sensitivity = 0.797 and specificity = 0.391, c − statistic = 0.74; 95%IC: 0.62-0.86, P < 0.001), to predict the risk of need admission to ICU (OR = 5.8; 95% CI: 2.2-15.4, P = 0.001), was constructed. Validation cohort: in 170 different patients, the AAD model < 2.75 (c − statistic = 0.80 (95% CI: 0.70-0.91, P < 0.001) adequately predicted the risk (OR = 8.8, 95% CI: 3.4-22.6, P < 0.001) to be admitted in the ICU (27 patients, 15.95%). Conclusions The elevation of AST (a possible marker of early liver injury) along with DD and age efficiently predict early (at admission time) probability of ICU admission during the clinical course of COVID-19. The AAD model can improve the comprehensive management of COVID-19 patients, and it could be useful as a triage tool to early classify patients with a high risk of developing a severe clinical course of the disease.
Highlights
The entire healthcare system’s collapse is a serious public concern worldwide due to the pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARSCoV-2) infection
In a post hoc analysis (StatMate 2 for Windows), we found a power higher than 95% in the effect sizes of main variables (Age, AST, and DD), so we conclude that the sample size used to construct and to validate de model was enough to get statistical validity
We develop a regression model using early biomarkers to predict the severity of COVID-19, assessing the need for admission to intensive care unit (ICU)
Summary
The entire healthcare system’s collapse is a serious public concern worldwide due to the pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARSCoV-2) infection. In the United States (US), the coronavirus disease (COVID-19) has given way to a nationwide public health catastrophe. Mexico is one of the countries with a higher frequency of deaths due to the COVID-19 pandemic, with more than 70,000 deaths, a tally surpassed only by the US, Brazil, and India [3]. In this catastrophic scenario, results essential to understand the main factors related to a worse prognosis in the Mexican population
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.