Abstract
Large wood of oak trees (Quercus spp.) has resided in the streams and sediments of north Missouri, USA for many thousands of years. This wood affords the opportunity to compare a chronosequence of differences in wood density over a very long period. We analyzed the relationship between the age (residence time) and density of heartwood from oak boles using tree-ring and 14C dating methods and discuss their implications. The residence time of large oak wood (> 25 cm diameter) sampled in the streams and sediments ranged from less than 14 years to more than 12,320 years. The oak wood ranged in density from 0.82 g cm-3 for a tree that had recently fallen into the stream to 0.14 g cm-3 for ancient oak wood. Two regression equations relate age (residence time) and density of oak wood and explain 88 percent of the variance in the dependent variables. Equation 1, heartwood density = age, can be used for studies in carbon cycling, wood as invertebrate habitat, or other questions related to the density and ecology of wood in streams such as wood retention and export. Equation 2, age = heartwood density, can be used for estimating when oak wood was formed on a very coarse scale over many thousands of years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.