Abstract

<h3>Abstract</h3> Photoimmunotherapy (PIT) using an antibody conjugated to a near infrared dye IR700 is achieving significant success in target-specific elimination of cells. Fibroblast activation protein alpha (FAP-α) is an important target in cancer because of its expression by cancer associated fibroblasts (CAFs) as well as by some cancer cells. CAFs that express FAP-α have protumorigenic and immune suppressive functions. Using immunohistochemistry of human breast cancer tissue microarrays, we identified an increase of FAP-α+ CAFs in invasive breast cancer tissue compared to adjacent normal tissue. We found FAP-α expression increased in fibroblasts co-cultured with cancer cells. In proof-of-principle studies, we engineered human FAP-α overexpressing MDA-MB-231 and HT-1080 cancer cells and murine FAP-α overexpressing NIH-3T3 fibroblasts to evaluate several anti-FAP-α antibodies and selected AF3715 based on its high binding-affinity with both human and mouse FAP-α. After conjugation of AF3715 with the phthalocyanine dye IR700, the resultant antibody conjugate, FAP-α-IR700, was evaluated in cells and tumors for its specificity and effectiveness in eliminating FAP-α expressing cell populations with PIT. FAP-α-IR700-PIT resulted in effective FAP-α-specific cell killing in the engineered cancer cells and in two patient-derived CAFs in a dose-dependent manner. Following an intravenous injection, FAP-α-IR700 retention was three-fold higher than IgG-IR700 in FAP-α overexpressing tumors, and two-fold higher compared to wild-type tumors. FAP-α-IR700-PIT resulted in significant growth inhibition of tumors derived from FAP-α overexpressing human cancer cells. A reduction of endogenous FAP-α+ murine CAFs was identified at 7 days after FAP-α-IR700-PIT. FAP-α-targeted NIR-PIT presents a promising strategy to eliminate FAP-α+ CAFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.