Abstract

In the present study, the technique of principal component analysis (PCA) is applied to analyze the hourly mean values of geomagnetic field components D, H, and Z along an Indo-Russian chain of stations during the International Equatorial Electrojet Year (IEEY) from January 1992 to June 1993. This technique (PCA) is found to be suitable for separating the normal electrojet (NEJ) and counter-electrojet (CEJ) variations, and the first two principal components (PCs) are able to describe the characteristics of NEJ- and CEJ-related field variations. It is found that the first principal component (PC-1) for H, D, and Z varies as a function of time with latitude and depicts the well-known Sq variations, whereas PC-2(H) does not show any variations at all latitudes during NEJ days. On CEJ days, PC-2(H) shows a large negative excursion at equatorial stations (KAN to BAN). The NEJ- and CEJ-related current systems are determined by combining the hourly inequalities in D and H. PC-1 brings out a well-defined anticlockwise loop for NEJ days, with its focus near the dip latitude (~35°N), and a clockwise loop for CEJ days with a well-defined focus near the dip latitude (~20°N) around noon local time. The CEJ-related current system is marked by intense westward current flow in the equatorial belt and is shown to close its path by forming a clockwise loop extending from the dip equator to midlatitudes. Comparison with a numerically simulated current system, caused by various tidal modes, emphasizes the significance of antisymmetric semidiurnal tidal modes in the generation of CEJ events.Graphical abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.