Abstract

The glucose-lowering drug pioglitazone undergoes hepatic CYP2C8-mediated biotransformation to its main metabolites. The antiplatelet drug clopidogrel is metabolized to clopidogrel acyl-<i>β</i>-d-glucuronide, which was recently found to be a strong time-dependent inhibitor of CYP2C8 in humans. Therefore, we studied the effect of clopidogrel on the pharmacokinetics of pioglitazone. In a randomized crossover study, 10 healthy volunteers ingested either 300 mg of clopidogrel on day 1, and 75 mg on days 2 and 3, or placebo. Pioglitazone 15 mg was administered 1 hour after placebo and clopidogrel on day 1. Plasma concentrations of pioglitazone, clopidogrel, and their main metabolites were measured up to 72 hours. Clopidogrel increased the area under the plasma concentration-time curve (AUC<sub>0–∞</sub>) of pioglitazone 2.1-fold [<i>P</i> &lt; 0.001, 90% confidence interval (CI) 1.8–2.6] and prolonged its half-life from 6.7 to 11 hours (<i>P</i> = 0.002). The peak concentration of pioglitazone was unaffected but the concentration at 24 hours was increased 4.5-fold (range 1.6–9.8; <i>P</i> &lt; 0.001, 90% CI 3.17–6.45) by clopidogrel. The M-IV-to-pioglitazone AUC<sub>0–∞</sub> ratio was 49% (<i>P</i> &lt; 0.001, 90% CI 0.40–0.59) of that during the control phase, indicating that clopidogrel inhibited the CYP2C8-mediated biotransformation of pioglitazone. Clopidogrel increases the exposure to pioglitazone by inhibiting its CYP2C8-mediated biotransformation. In consequence, use of clopidogrel may increase the risk of fluid retention and other concentration-related adverse effects of pioglitazone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call