Abstract
A theoretical and computational study into the aerodynamics of trailing-edge-cooled transonic turbine blades is described in this part of the paper. The theoretical study shows that, for unstaggered blades with coolant ejection, the base pressure and overall loss can be determined exactly by a simple control volume analysis. This theory suggests that a thick, cooled trailing edge with a wide slot can be more efficient than a thin, solid trailing edge. An existing time-marching finite volume method is adapted to calculate the transonic flow with trailing edge coolant ejection on a structured, quasi-orthogonal mesh. Good overall agreement between the present method, inviscid and viscous, and experimental evidence is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.