Abstract
Flying insects may enhance their flight force production by contralateral wing interaction during dorsal stroke reversal ('clap-and-fling'). In this study, we explored the forces and moments due to clap-and-fling at various wing tip trajectories, employing a dynamically scaled electromechanical flapping device. The 17 tested bio-inspired kinematic patterns were identical in stroke amplitude, stroke frequency and angle of attack with respect to the horizontal stroke plane but varied in heaving motion. Clap-and-fling induced vertical force augmentation significantly decreased with increasing vertical force production averaged over the entire stroke cycle, whereas total force augmentation was independent from changes in force produced by a single wing. Vertical force augmentation was also largely independent of forces produced due to wing rotation at the stroke reversals, the sum of rotational circulation and wake capture force. We obtained maximum (17.4%) and minimum (1.4%) vertical force augmentation in two types of figure-eight stroke kinematics whereby rate and direction of heaving motion during fling may explain 58% of the variance in vertical force augmentation. This finding suggests that vertical wing motion distinctly alters the flow regime at the beginning of the downstroke. Using an analytical model, we determined pitching moments acting on an imaginary body of the flapping device from the measured time course of forces, the changes in length of the force vector's moment arm, the position of the centre of mass and body angle. The data show that pitching moments are largely independent from mean vertical force; however, clap-and-fling reinforces mean pitching moments by approximately 21%, compared to the moments produced by a single flapping wing. Pitching moments due to clap-and-fling significantly increase with increasing vertical force augmentation and produce nose-down moments in most of the tested patterns. The analytical model, however, shows that algebraic sign and magnitude of these moments may vary distinctly depending on both body angle and the distance between the wing hinge and the animal's centre of mass. Altogether, the data suggest that the benefit of clap-and-fling wing beat for vertical force enhancement and pitch balance may change with changing heaving motion and thus wing tip trajectory during manoeuvring flight. We hypothesize that these dependencies may have shaped the evolution of wing kinematics in insects that are limited by aerodynamic lift rather than by mechanical power of their flight musculature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.