Abstract

A large proportion of solid material transported within the atmosphere during volcanic eruptions consists of particles less than 500 mum in diameter. The majority of these particles become incorporated into a wide range of aggregate types, the aerodynamic behaviour of which has not been determined by either direct observation or in the laboratory. In the absence of such data, theoretical models of fallout from volcanic plumes make necessarily crude assumptions about aggregate densities and fall velocities. Larger volcanic ejecta often consists of pumice of lower than bulk density. Experimental data are presented for the fall velocities of porous aggregates and single particles, determined in systems analogous to that of ejecta falling from a volcanic plume. It is demonstrated that the fall of aggregates may be modelled in identical fashion to single particles by using a reduced aggregate density dependent on the porosity, and a size corresponding to an enclosing sphere. Particles incorporated into aggregates attain a substantially higher fall velocity than single particles. This is due to the larger physical dimensions of the aggregate, which overcomes the effect of lower aggregate density. Additionally, the internal porosity of the aggregate allows some flow of fluid through the aggregate and this results in a small increase in fall velocity. The increase in fall velocity of particles incorporated into aggregates, rather than falling individually, results in the enhanced removal of fine material from volcanic plumes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.