Abstract

Existing methods of assay of malt starch-degrading enzymes were critically appraised. New methods based on natural substrates, namely starch and its natural intermediate-derivative, were developed for all the enzymes, except limit dextrinase for which pullulan was used. Thermostability, optimal temperatures and pHs were established. α-Amylase and limit dextrinase were the most thermostable and β-amylase, α-glucosidase and maltase were the least stable while diastase occupied an intermediate position. The optimal temperatures were congruent with thermostability, β- amylase having the lowest (50°C) and α-amylase the highest (65°C) with the remaining enzymes, including diastase, falling in between. In contrast, α-amylase has the lowest optimal pH (pH 4.5) and β amylase the highest (pH 5.5) while the others have pHs in between the two values. The roles of the enzymes were evaluated taking into account the level of activity, thermostability, optimum pH, the nature of the product(s), and the relevance to brewing. β-Amylase production of maltose was synergistically enhanced, mostly by α-amylase but also limit dextrinase. α-Glucosidase and maltase are unimportant for brewing, because of their low activity and the negative impact on β-amylase activity and the negative effect of glucose on maltose uptake by yeast. The starch-degrading enzymes (diastase) in a gram of malt were able to degrade more than 8 g boiled starch into reducing sugars in 10 min at 65°C. The latter, suggests that it will be possible to gelatinise most of the malt starch at a higher temperature and ensure its hydrolysis to fermentable sugars by mixing with smaller portions of malt and mashing at lower temperatures e.g. 50–60°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.