Abstract

SiC MOSFETs have exhibited considerable benefits in high-frequency, high-voltage, and high-temperature power electronics applications with outstanding material attributes as a result of the rapid advancement of power electronics technology. SiC MOSFETs slower short-circuit tolerance and faster switching rates provide new issues for the short-circuit prevention technology. In the opening section of the study, Si and SiC MOSFETs are compared and evaluated using various models and parametric factors. It has been demonstrated that SiC MOSFETs outperform Si MOSFETs in a variety of conditions and applications. The many SiC MOSFET short-circuit failure types as well as their underlying theories are initially explained in the papers main body. In addition, it examines the fundamentals of short-circuit test procedures and SiC MOSFET test circuits. The issues and limitations of the currently available SiC MOSFET short-circuit protection technology are then explored, along with factors impacting the short-circuit of SiC MOSFETs that are thoroughly examined. Lastly, the SiC MOSFET short-circuit protection technology development trend is forecasted, and potential future areas for improvement and innovation are considered. SiC MOSFET short-circuit protection technology will be enhanced and optimized to satisfy the needs of efficient and dependable power electronic systems as technology advances and application requirements expand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call