Abstract

Most of today's particle accelerators are used in industry or for medical applications, for example, in radioisotope production and cancer therapy. One important factor for these applications is the size of the accelerator, which ideally should be as small as possible. In this respect, fixed-field alternating-gradient accelerators (FFAGs) can be an attractive alternative, which combine the best features of conventional synchrotrons and cyclotrons: FFAGs deliver better performance than synchrotrons while retaining flexibility. Of particular interest are accelerators for protons of moderate energy (0.25-1 GeV) and light ions such as carbon (up to 400 MeV per nucleon), for example, for proton/carbon-ion charged particle therapy or potential future applications such as accelerator-driven subcritical reactors. Due to high magnetic rigidity, a compact machine can be only achieved by using high field superconducting magnets. A disadvantage of FFAGs is that the magnetic elements can be very challenging. Quite often, complicated multipole fields are required, in combination with stringent geometric constraints. In this paper, we demonstrate the advantages of helical coil technology by means of an accelerator for proton therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.