Abstract

Compact-size disk drives with high storage densities are in high demand due to the popularity of portable computers and workstations. The contact-start-stop (CSS) endurance performance must improve in order to accomodate the higher number of on/off cycles. In this paper, we looked at 65 mm thin-film canasite substrate disks and evaluated their mechanical performance. We compared them with conventional aluminum NiP-plated disks in surface topography, take-off time with changes of skew angles and radius, CSS, drag test and glide height performance, and clamping effect. In addition, a new post-sputter process aimed at the improvement of take-off and glide as well as CSS performances was investigated and demonstrated for the canasite disks. From the test results, it is indicated that canasite achieved a lower take-off velocity, higher clamping resistance, and better glide height and CSS endurance performance. This study concludes that a new generation disk drive equipped with canasite substrate disks will consume less power from the motor due to faster take-off and lighter weight, achieve higher recording density since the head flies lower, can better withstand damage from sliding friction during the CSS operations, and will be less prone to disk distortion from clamping due to its superior mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.