Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is a prokaryotic immune system that used to resist foreign genetic factors. It rapidly becomes the hot technology in life sciences and is applies for genome editing to solve the problem of genome-derived diseases. Using CRISPR/Cas technique, the biological DNA sequence can be repaired, cut, replaced, or added. It can effectively change the human stem cells and is expected to achieve results in the treatment. Compared with ZFN and TALEN genome editing techniques, CRISPR is more effective, accurate, and convenient. The application of CRISPR technique in three dimensional (3D) genome structure makes us understand the relationship between linear DNA sequence and 3D chromatin structure. Utilizing CRISPR/Cas9 genome editing to reverse or delete CTCF binding sites, to recognize changes of topological isomerism of the genome and interactions between chromatin loops. The purpose of this review is to introduce the characteristics and classification of the current CRISPR/Cas system, multiple functions, and potential therapeutic uses, as well as to outline the effect of the technique on chromatin loops by changing CTCF sites in 3D genomes. We will also briefly describe the importance of ethical dilemmas to be faced in CRISPR applications and provide a perspective for potential CRISPR considerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call