Abstract

Cool roofs play a significant role in mitigating urban heat islands, improving indoor thermal comfort, and saving energy. In recent years, with advances in the manufacturing of nanophotonics and metamaterials, researchers have developed super cool roofs where the surface temperature remains below the air temperature in direct daylight and temperature-adaptive roofs where the solar reflectance or thermal emissivity can change with temperature. This paper reviews the research progress and status of conventional cool roofs, super cool roofs, and temperature-adaptive roofs. This paper affirms the role of cool roofs in mitigating urban heat islands and energy conservation. And this paper also summarizes some of the crucial issues that cool roofs may face when used in cities. The effects of cool roofs on urban wind fields, planetary boundary layer heights, and pollutants above cities as well as the effects of sky view factor, atmospheric humidity, dust, and aging on the performance of cool roofs are discussed. The results show that the use of cool roofs is limited by geography and climate. The net cooling power can reach 150 W/m2 in dry, rainless, and clear sky areas. Cool roof technology is less effective in hot and humid climates because the first atmospheric window is affected to varying degrees by the increased radiation medium in the atmosphere, while the second atmospheric window is nearly closed in hot and humid climates, weakening the terrestrial long-wave radiation entering space. The use of cool roofs in warm and humid climates (over 80% relative humidity, with temperature over 24 °C) for most summer nights may limit the radiative cooling performance of the cool roof. The large-scale use of cool roofs in cities near huge lakes or seas may affect the urban wind field, causing a cooling island effect and a local build-up of pollutants. Finally, an outlook on the research prospects of cool roofs was given to provide ideas for further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.