Abstract

In this work the adsorption of the antibiotic rifampicin (RP) on the surface of gold (AuNP) or silver nanoparticles (AgNP) was investigated using both surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopies. Such spectra were obtained in the absence and presence of the surface modifier 2-mercaptoethanol (ME) using excitations by laser radiations of 532, 632.8 and 1064nm wavelengths. The use of different conditions under the presence of ME led to changes in the spectral pattern ascribed to the influence of resonance Raman (RR) effect and distinct chemical interactions of RP with the metallic surfaces. The sensibility of the chromophoric moiety, i.e. a <pi>-conjugated orbital, to the adsorption geometries, which can be controlled by surface modifiers, impacts the RR effect. Theoretical models involving RP and metal atoms were obtained from Density Functional Theory (DFT) calculations, and used for supporting the vibrational assignment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.