Abstract

The interaction of H2 with Fe(111) has been studied by thermal energy atom scattering (TEAS). The specularly scattered He intensity as a function of hydrogen coverage exhibits a concave drop in scattered He intensity up to 30% coverage, followed by a plateau and another drop in intensity at 80% coverage. A model has been developed to account for this data which assumes three adsorption sites for H on Fe(111), in analogy with the three desorption peaks seen in temperature-programmed desorption (TPD). The adsorption sites have not been definitely assigned, but are labeled ‘‘deep–hollow,’’ ‘‘shallow–hollow,’’ and ‘‘on-top.’’ Competitive adsorption into the deep-hollow and shallow-hollow sites is assumed to account for the initial concavity of the data. Adsorption into on-top sites only becomes significant at 80% coverage. Effective cross sections and reflectivities for the three sites have been obtained for θi=60° and 40°. When a H saturated surface is heated, the scattered He intensity decreases upon heating from 173 to 240 K, at which point desorption has already begun. This drop in intensity is not completely explicable by a Debye–Waller attenuation. It is proposed to be due to a shift in population of the adsorbed H to more exposed, on-top sites, in accord with a Boltzmann distribution of adsorption sites. The scattered He intensity increases upon further heating from 240 to 400 K, corresponding to the desorption of recombined H2 from the surface. Comparison of the He/H/Fe(111) system is made with the He/H/Pt(111) and He/H/Fe(110) systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call