Abstract

By performing the first-principles calculation, the adsorption of CO and NO molecules on the Au, Pt, Pd, or Ni doped MoS2 monolayer has been studied. The interaction between CO or NO with the doped MoS2 monolayer is strong and belongs to the chemisorption, as evidenced by the large adsorption energy and the short distance between the adsorbed molecules and the dopants. The charge transfer and the electronic property induced by the molecule adsorption are discussed. It is found that for both CO and NO adsorption, for all the cases charge transfer between the substrates and the adsorbed molecules has been observed. For NO, the adsorption obviously induces new impurity states in the band gap or the redistribution of the original impurity states. These can lead to the change of the transport properties of the doped MoS2 monolayer, by which the adsorbed CO or NO can be detected. The present work shows that introducing appropriate dopants may be a feasible method to improve the performance of MoS2-based gas sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call