Abstract

The adsorption of Au on the (110) surfaces of CeO2 and Zr-doped CeO2 were studied using projector-augmented wave (PAW) method based density-functional theory (DFT) within the gradient approximation (GGA) and with the inclusion of on-site Coulomb interaction (DFT+U). It is found that, due to the doping of Zr, the adsorption energies of Au are increased and the strongest adsorption geometry is altered. The doping of Zr results in larger distortion in the structure of the substrate, and enhances the catalytic activity of the Au/CeO2(110) system and the oxidization of Au. These results may lead to a better understanding for the Au/Zr-doped CeO2 catalysts and give some clues for improving the efficiency of the three-way catalysts (TWC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call