Abstract
Arsenic contamination in drinking water resources is a global problem; therefore, its removal from drinking water has become an important sustainable matter. The adsorption process can be more cost-effective and applicable, especially, if the absorbents used in the process are low-cost natural geo-materials. Beidellite, zeolite, and sepiolite are inexpensive and natural minerals available locally, modified, and used as adsorbents for the removal of arsenic ions from aqueous solutions in batch experiments. The kinetics of the adsorption process was separately tested for the pseudo-first order and pseudo-second order reactions and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. The comparison among the models showed that the pseudo second-order model best described the adsorption kinetics. Applied to the experimental equilibrium, at different temperatures were the Langmuir and Freundlich isotherm models. The Langmuir isotherm was used to calculate the adsorption capacities (Q°) of minerals for arsenic ions. The adsorption capacities of these three modified minerals, at different temperatures, ranged from 476 to 841 µg/g. Thermodynamic studies showed that the arsenic uptake reactions by minerals were endothermic and spontaneous in nature. Bottled spring water containing arsenic, sold in markets, was used to conduct the arsenic adsorption study beidellite, zeolite, and sepiolite, minerals which efficiently removed the arsenate ions from the bottled drinking water. The use of modified beidellite, zeolite, and sepiolite as adsorbents in the arsenic ion removal processes is possible, based on the optimum parameters found.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.