Abstract

The reactions of ethylene glycol and 1,2-propanediol have been studied on Pd(111) using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). Both molecules initially decompose through O–H activation, forming ethylenedioxy (–OCH 2CH 2O–) and 1,2-propanedioxy (–OCH 2CH(CH 3)O–) surface intermediates. For ethylene glycol, increases in thermal energy lead to dehydrogenation and formation of carbonyl species at both oxygen atoms. The resulting glyoxal (O═CHCH═O) either desorbs molecularly or reacts through one of two competing pathways. The favored pathway proceeds via C–C bond scission, dehydrogenation, and decarbonylation to form carbon monoxide and hydrogen. In a minor pathway, small amounts of glyoxal undergo C–O bond scission and recombination with surface hydrogen to form ethylene and water. The same reaction mechanism occurs for 1,2-propanediol after methyl elimination and formation of glyoxal. However, this is accompanied by a minor pathway involving a methylglyoxal (O=CHC(CH 3)=O) intermediate. The prevalence of the dehydrogenation/decarbonylation pathway in the current work is consistent with the high selectivity for C–C scission in the aqueous phase reforming of polyols on supported Pd catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.