Abstract
A novel adsorbent (FeOOH@PU) for hexavalent chromium [Cr(VI)] removal was synthesized using a polyurethanefoam (PU) and FeOOH via a facile one-step method. Scanning electron microscopy (SEM), FTIR, X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS) characterized the adsorbent. The influence of environmental factors was investigated to evaluate the adsorption behavior for Cr(VI). Furthermore, adsorption dynamic and adsorption isotherm models described the adsorption performance. This adsorbent also treated electroplating wastewater and remediated simulated Cr(VI) contaminated soil. The adsorbent effectively removed Cr(VI) with a high adsorption rate; its equilibrium rate constant was 13 times that of FeOOH. Cr(VI) removal was a monolayer adsorption process and the maximum adsorption capacity of FeOOH@PU reached 34.9mg Cr/g. Electrostatic attraction was the mechanism of Cr(VI) removal. Electroplating wastewater became clear and the Cr(VI) concentration decreased from 9.76 to 0.042mg/L after treatment with FeOOH@PU. Cr enrichment in rice seedlings grown in remediated soil decreased from 7.687 to 6.295mg Cr/kg. These results suggested that FeOOH@PU was a promising adsorbent for Cr(VI) removal and Cr(VI) stabilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.