Abstract

1. It was confirmed that Adriamycin (doxorubicin) inactivates cytochrome c oxidase upon incubation. However, further investigation shows that this inactivation is strongly dependent upon the presence of Fe3+ and Cu2+. Trace amounts of these transition metal ions, present in phosphate and Tris buffers, bind strongly to the Adriamycin and the complex formed is responsible for the inactivation of cytochrome c oxidase. No Adriamycin-induced inactivation of cytochrome c oxidase occurred in the presence of EDTA or in phosphate buffers purified on a cation exchange column to remove trace metals. 2. The metal ion-induced inactivation of cytochrome c oxidase by Adriamycin results in significant decreases in both the maximum velocity and the Michaelis constant. The degree of inactivation is strongly dependent on the Fe3+ concentration. 3. Cardiolipin partially protects against cytochrome c oxidase inactivation, presumably by binding to the cytochrome c oxidase, whereas catalase or superoxide dismutase partially protect by scavenging damaging reactive oxygen species generated within a Fe3+-Adriamycin-enzyme complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.