Abstract
The nanofluids (including MWCNT based nanofluid and SWCNT based nanofluid) and liquid metal Ga68In20Sn12 are proposed to replace the conventional water as cooling liquid of micro-channel for enhancing heat transfer performance of three-dimensional integrated circuits (3-D ICs) in this paper. An equivalent thermal model of 3-D ICs with integrated micro-channel is established to investigate the heat transfer performances for using different cooling liquids. The results show that the steady-state temperature for MWCNT based nanofluid, SWCNT based nanofluid and Ga68In20Sn12 as cooling liquids can be reduced over 25.698%, 28.771% and 35.735% than the conventional water scheme in a four-layers stacked chip, respectively. Besides, it is found that the steady-state temperature of all die layer in 3-D ICs can be further reduced by increasing the micro-channel size and flow velocity of cooling liquid. Therefore, the proposed novel materials (i.e., nanofluids and Ga68In20Sn12) as cooling liquids have excellent application prospect in solving thermal problems of 3-D ICs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.