Abstract

Diabetes mellitus (DM) is a metabolic disorder impacting cerebral function. The administration of Streptozotocin (STZ) is a well-known animal model of insulinopenic type 1 DM in rats. STZ-induced DM results in a myriad of alteration in the periphery and central nervous system (CNS). Cerebrolysin (CBL) is a neuropeptide preparation that promotes synaptic and neuronal plasticity in various animal models. In all cases, CBL was administered when the model was established. This research aims to investigate the neuroprotective and neurorepair effect of CBL on the cytoarchitecture of neurons and spine density in pyramidal neurons of the prefrontal (PFC) and the CA1 region of the dorsal hippocampus, as well as spheroidal neurons of the dentate gyrus (DG), in STZ-induced DM. In the first experimental condition, STZ and CBL are administered at the same time to evaluate the potential preventive effect of CBL. In the second experimental condition, CBL was administered two months after establishing the DM model to measure the potential neurorepair effect of CBL. STZ-induced hyperglycemia remained unaltered by the administration of CBL in both experimental conditions. In the first experimental condition, CBL treatment preserved the neuronal morphology in PFC layer 3, PFC layer 5 and the DG of the hippocampus, while also maintaining spine density in the PFC-3, DG and CA1 hippocampus. Furthermore, CBL induced neurorepair in neurons within the PFC-3, PFC-5 and CA1 regions of the hippocampus, along with an increase in spine density in the PFC-3, DG and CA1 hippocampus. These findings suggest that CBL´s effects on neuroplasticity could be observed before or after the damage was evident.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call