Abstract

During January-March, Scotian Shelf water has been observed to flow episodically from the southwestern Scotian Shelf directly across the Northeast Channel to Georges Bank. The possible factors that allow Scotian Shelf water to break the topographic constraint presented by the Northeast Channel and flow directly to Georges Bank are considered. As a simple analog to the flow over the southwestern Scotian Shelf near the Northeast Channel, the adjustment of a barotropic current near a shelf-break to a sharp bend in the shelf topography is studied numerically. For parameters within the oceanographic range, the adjustment to the bend is smooth and steady with no eddies shed at the corner. The vorticity dynamics allow a balance between the vortex stretching in the flow and the curvature in the flow. This is possible since the bend is a right-hand one facing downstream, a similar balance not being possible for a left-hand bend, in which case eddy formation is likely. A simple model of this balance clarifies the vorticity dynamics and provides the scaling rc = √eL/0.765 for any streamline in the flow, where rc is the radius of curvature at the corner, E = u0/fL and L = h0/b, where uo is the initial speed, f the coriolis parameter, h0 the initial depth and b the bottom slope. These results show that other factors such as stratification, wind stress, and time-dependent inflow must play a role in any flow across the Northeast Channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.