Abstract

Abstract In 1955 Pancharatnam showed that a cyclic change in the state of polarization of light is accompanied by a phase shift determined by the geometry of the cycle as represented on the Poincaré sphere. The phase owes its existence to the non-transitivity of Pancharatnam's connection between different states of polarization. Using the algebra of spinors and 2 × 2 Hermitian matrices, the precise relation is established between Pancharatnam's phase and the recently discovered phase change for slowly cycled quantum systems. The polarization phase is an optical analogue of the Aharonov-Bohm effect. For slow changes of polarization, the connection leading to the phase is derived from Maxwell's equations for a twisted dielectric. Pancharatnam's phase is contrasted with the phase change of circularly polarized light whose direction is cycled (e.g. when guided in a coiled optical fibre).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.