Abstract

Plasma Enhanced Chemical Vapor Deposition (PECVD) was used to grow 200, 300 and 400 nm thick silicon nitride layers (SiN x ) on a high temperature aromatic polyester substrate spin coated with a silica–acrylate hybrid coating (hard coat). Layers deposited without oxygen plasma treatment remained attached to the substrate, while spontaneous buckle delamination of the layer deposited with oxygen plasma treatment was observed directly after layer deposition. This effect was investigated using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). SIMS analyses showed a considerable increase of silicon oxide by exposing the substrate to oxygen plasma treatment, while AFM showed an increased roughness. Bright-field transmission electron micrographs show the presence of a particulate SiO 2 layer. The oxygen plasma treatment thus removes the acrylate from the hard coat layer leaving behind the SiO 2 particles leading to lower adhesion and thus to spontaneous buckle delamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.