Abstract
AbstractIn his seminal paper “A Natural Semantics for Lazy Evaluation”, John Launchbury proves his semantics correct with respect to a denotational semantics, and outlines a proof of adequacy. Previous attempts to rigorize the adequacy proof, which involves an intermediate natural semantics and an intermediate resourced denotational semantics, have failed. We devised a new, direct proof that skips the intermediate natural semantics. It is the first rigorous adequacy proof of Launchbury's semantics. We have modeled our semantics in the interactive theorem prover Isabelle and machine-checked our proofs. This does not only provide a maximum level of rigor, but also serves as a tool for further work, such as a machine-checked correctness proof of a compiler transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.