Abstract

The adjuvanticity of bacterial adenylate cyclase toxins has been ascribed to their capacity, largely mediated by cAMP, to modulate APC activation, resulting in the expression of Th2–driving cytokines. On the other hand, cAMP has been demonstrated to induce a Th2 bias when present during T cell priming, suggesting that bacterial cAMP elevating toxins may directly affect the Th1/Th2 balance. Here we have investigated the effects on human CD4+ T cell differentiation of two adenylate cyclase toxins, Bacillus anthracis edema toxin (ET) and Bordetella pertussis CyaA, which differ in structure, mode of cell entry, and subcellular localization. We show that low concentrations of ET and CyaA, but not of their genetically detoxified adenylate cyclase defective counterparts, potently promote Th2 cell differentiation by inducing expression of the master Th2 transcription factors, c-maf and GATA-3. We also present evidence that the Th2–polarizing concentrations of ET and CyaA selectively inhibit TCR–dependent activation of Akt1, which is required for Th1 cell differentiation, while enhancing the activation of two TCR–signaling mediators, Vav1 and p38, implicated in Th2 cell differentiation. This is at variance from the immunosuppressive toxin concentrations, which interfere with the earliest step in TCR signaling, activation of the tyrosine kinase Lck, resulting in impaired CD3ζ phosphorylation and inhibition of TCR coupling to ZAP-70 and Erk activation. These results demonstrate that, notwithstanding their differences in their intracellular localization, which result in focalized cAMP production, both toxins directly affect the Th1/Th2 balance by interfering with the same steps in TCR signaling, and suggest that their adjuvanticity is likely to result from their combined effects on APC and CD4+ T cells. Furthermore, our results strongly support the key role of cAMP in the adjuvanticity of these toxins.

Highlights

  • Development of an effective humoral immune response is crucially dependent on T cell help

  • Of paramount importance is the second messenger cAMP, which is produced by cellular adenylate cyclases in response to heterotrimeric G-protein coupled surface receptors, such as the receptors for prostaglandin E2, a proinflammatory prostanoid produced by activated antigen presenting cells (APC) [3]. cAMP has been shown to favour T helper 2 (Th2) cell differentiation and GATA-3 dependent production of IL-4 and IL-5 through a pathway regulated by phosphoinositide-dependent kinase 1 (PDK1) and protein kinase A (PKA) [4,5,6,7,8,9]

  • The adenylate cyclase (AC) toxins produced by many pathogenic bacteria assist in this crucial function by catalyzing the production of cAMP, which acts as a potent immunosuppressant

Read more

Summary

Introduction

Development of an effective humoral immune response is crucially dependent on T cell help. The last step of B cell differentiation, involving immunoglobulin affinity maturation and isotype switching, occurs in peripheral lymphoid organs under the guidance of a specialized CD4+ T cell subset, known as T helper 2 (Th2). These cells provide both soluble (IL-4) and membranebound (CD40L) factors essential for terminal differentiation of antigen specific B cells [1]. Priming the Th2 differentiation program in naive CD4+ T cells requires essential cues which are provided by antigen presenting cells (APC) in the form of cytokines. Of paramount importance is the second messenger cAMP, which is produced by cellular adenylate cyclases in response to heterotrimeric G-protein coupled surface receptors, such as the receptors for prostaglandin E2, a proinflammatory prostanoid produced by activated APC [3]. cAMP has been shown to favour Th2 cell differentiation and GATA-3 dependent production of IL-4 and IL-5 through a pathway regulated by phosphoinositide-dependent kinase 1 (PDK1) and protein kinase A (PKA) [4,5,6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call