Abstract

Enhancing the uptake and enrichment of heavy metals in plants is one of the important means to strengthen phytoremediation. In the present study, citric acid (CA), tartaric acid (TA), and malic acid (MA) were applied to enhance phytoremediation by Bidens pilosa L. in Cd-contaminated soil. The results showed that by the addition of appropriate concentrations of CA, TA, and MA, the values of the bioconcentration factor increased by 77.98%, 78.33%, and 64.49%, respectively, the translocation factor values increased by 16.45%, 12.61%, and 5.73%, respectively, and the values of the phytoextraction rates increased by 169.21%, 71.28%, and 63.11%, respectively. The minimum fluorescence values of leaves decreased by 31.62%, 0.28%, and 17.95%, while the potential efficiency of the PSII values of leaves increased 117.87%, 2.25%, and 13.18%, respectively, when CA, TA, and MA with suitable concentration were added. Redundancy analysis showed that CA and MA in plants were significantly positively correlated with plant growth, photosynthesis, and other indicators, whereas TA showed a negative correlation with most indicators. Moreover, CA addition could significantly increase the abundances of Azotobacter, Pseudomonas, and other growth-promoting bacteria, and the abundance values of Actinophytocola and Ensifer were improved in TA treatments. Therefore, our results demonstrated that low-molecular-weight organic acids could enhance phytoremediation, and exogenous CA could significantly improve the phytoremediation of Cd-contaminated soil by Bidens pilosa L.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call