Abstract

Vaccinia virus (VACV) elicits a robust CD8 T cell response that plays an important role in host resistance. To date, there is little information on the molecules that are essential to generate large pools of VACV-specific effector CD8 T cells. In this study, we show that the adaptor molecule MyD88 is critical for the magnitude of primary CD8 T cell responses to both dominant and subdominant VACV epitopes. MyD88(-/-) mice exhibit profound reduction in CD8 T cell expansion and antiviral cytokine production. Surprisingly, the defect was not due to impaired APC function, as MyD88(-/-) dendritic cells matured normally and were able to promote strong CD8 T cell priming following VACV infection. Rather, adoptive transfer experiments demonstrated that intrinsic MyD88-dependent pathways in CD8 T cells were critical. MyD88-deficient CD8 T cells failed to accumulate in wild-type hosts and poor expansion of MyD88-deficient VACV-specific CD8 T cells resulted after virus infection. In contrast, no defect was evident in the absence of TRIF, TLR2, TLR4, TLR9, and IL-1R. Together, our results highlight an important role for MyD88 in initial antiviral CD8 T cell responses and suggest that targeting this pathway may be useful in promoting and sustaining anti-VACV immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.