Abstract
Main memory capacities have grown up to a point where most databases fit into RAM. For main-memory database systems, index structure performance is a critical bottleneck. Traditional in-memory data structures like balanced binary search trees are not efficient on modern hardware, because they do not optimally utilize on-CPU caches. Hash tables, also often used for main-memory indexes, are fast but only support point queries. To overcome these shortcomings, we present ART, an adaptive radix tree (trie) for efficient indexing in main memory. Its lookup performance surpasses highly tuned, read-only search trees, while supporting very efficient insertions and deletions as well. At the same time, ART is very space efficient and solves the problem of excessive worst-case space consumption, which plagues most radix trees, by adaptively choosing compact and efficient data structures for internal nodes. Even though ART's performance is comparable to hash tables, it maintains the data in sorted order, which enables additional operations like range scan and prefix lookup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.