Abstract

This pilot study aimed to investigate the effect of simple sugar ingestion, in amounts typical of common ingestion, on appetite and the gut-derived hormone response. Seven healthy men ingested water (W) and equicaloric solutions containing 39.6 g glucose monohydrate (G), 36 g fructose (F), 36 g sucrose (S), and 19.8 g glucose monohydrate + 18 g fructose (C), in a randomised order. Serum concentrations of ghrelin, glucose dependent insulinotropic polypeptide (GIP), glucagon like peptide-1 (GLP-1), insulin, lactate, triglycerides, non-esterified fatty acids (NEFA), and d-3 hydroxybutyrate, were measured for 60 min. Appetite was measured using visual analogue scales (VAS). The ingestion of F and S resulted in a lower GIP incremental area under the curve (iAUC) compared to the ingestion of G (p < 0.05). No differences in the iAUC for GLP-1 or ghrelin were present between the trials, nor for insulin between the sugars. No differences in appetite ratings or hepatic metabolism measures were found, except for lactate, which was greater following the ingestion of F, S, and C, when compared to W and G (p < 0.05). The acute ingestion of typical amounts of fructose, in a variety of forms, results in marked differences in circulating GIP and lactate concentration, but no differences in appetite ratings, triglyceride concentration, indicative lipolysis, or NEFA metabolism, when compared to glucose.

Highlights

  • The ingestion of simple sugars has been the subject of much recent interest

  • The aim of this study was to examine the effect of simple sugar ingestion in more commonly ingested amounts on appetite, circulating gut hormone responses, and markers of hepatic metabolism

  • The ingestion of fructose alone saw of a significant increase in bloodinglucose above water fructose theThis ingestion of fructose saw a significant increase in blood glucose amount of fructose controlconcentration, values at 30 min

Read more

Summary

Introduction

The ingestion of simple sugars has been the subject of much recent interest. In particular, the proportion of the daily energy intake from the ingestion of added fructose has rapidly increased, and this has been suggested to play a role in the development of metabolic syndrome and obesity [1,2].Besides the ingestion of the fructose found naturally in fruits, fructose is typically ingested either as its component in sucrose or as high fructose corn syrup (commonly 55% fructose and 45% glucose).Fructose ingestion has been suggested to differentially alter feeding patterns to other simple sugars, leading to a resultant increase in body mass. The ingestion of simple sugars has been the subject of much recent interest. The proportion of the daily energy intake from the ingestion of added fructose has rapidly increased, and this has been suggested to play a role in the development of metabolic syndrome and obesity [1,2]. Besides the ingestion of the fructose found naturally in fruits, fructose is typically ingested either as its component in sucrose or as high fructose corn syrup (commonly 55% fructose and 45% glucose). Fructose ingestion has been suggested to differentially alter feeding patterns to other simple sugars, leading to a resultant increase in body mass. One potential mechanism for the effect of fructose on feeding patterns is the effect that its ingestion may have on incretin and gut-derived hormones, which are known to influence subjective feelings of hunger.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call