Abstract

The central role of myeloid cells in driving autoimmune diseases and cancer has raised interest in manipulating their function or depleting them for therapeutic benefits. To achieve this, antibodies are used to antagonize differentiation, survival and polarization signals or to kill target cells, for example in the form of antibody-drug conjugates (ADC). The action of ADC in vivo can be hard to predict based on target expression pattern alone. The biology of the targeted receptor as well as its interplay with the ADC can have drastic effects on cell apoptosis versus survival. Here we investigated the efficacy of CD11b or Ly-6C/Ly-6G-specific variable fragments of camelid heavy chain-only antibodies (VHH) conjugated to Pseudomonas exotoxin A to deplete myeloid cells in vitro and in vivo. Our data highlight striking differences in cell killing in vivo, depending on the cell subset and organs targeted, but not antigen expression level or VHH affinity. We observed striking differences in depletion efficiency of monocytes versus granulocytes in mice. Despite similar binding of Ly-6C/Ly-6G-specific VHH immunotoxin to granulocytes and monocytes, granulocytes were significantly more sensitive than monocytes to immunotoxins treatment. Our results illustrate the need of early, thorough in vivo characterization of ADC candidates.

Highlights

  • Conventional and engineered antibodies have become indispensable therapeutic tools in the treatment of autoimmune diseases[1] or cancer[2]

  • Conventional dendritic cells (DC), classical monocytes and granulocytes can be distinguished by the expression of CD11c and CD11b integrins, Ly-6C and Ly-6G GPI-anchored proteins and Class II MHC (Fig. 1)

  • To isolate VHHs against known or novel antigens, we have previously reported the panning on bone-marrow derived dendritic cells (BMDC) with a phage-displayed VHHs library obtained from the immunization of an alpaca with mouse splenocytes

Read more

Summary

Introduction

Conventional and engineered antibodies have become indispensable therapeutic tools in the treatment of autoimmune diseases[1] or cancer[2]. In oncology, they are used to kill cancer cells directly[2] or deplete cells that limit the anti-tumor response, such as regulatory T cells[3,4,5] or macrophages[6]. The action of antibodies through ADCC is sufficient to deplete target cells in some cases, second generation therapeutic antibodies are often conjugated through the use of appropriate linkers to a cytotoxic payload in order to increase and control cellular toxicity[7]. The activity of antibody-drug conjugates (ADC) depends on numerous factors. Our data highlight target-, cell-, and organ-dependent activity

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.