Abstract

Macrophages are crucial immune cells that play a role in tissue repair and can exhibit pro- or anti-inflammatory behaviour based on environmental stimulation. Their functional phenotype can be affected by platelet-derived products as determined by those products' composition. When the inflammatory response caused by implantation is excessive, it can lead to rejection of the implant. Therefore, a thorough evaluation of implant haemocompatibility is necessary to minimise undesirable consequences. In an in vitro study, monocyte-derived macrophages (MDMs) were obtained from the whole blood of sheep after a silicon-doped diamond-like carbon-coated implant insertion. These MDMs were then exposed to autologous platelet-derived products for functional marker analysis. Platelet-poor plasma (PPP) and pure platelet-rich plasma (P-PRP) stimulation increased arginase-1 activity, while leukocyte-rich PRP stimulation produced a mixed response involving higher O2- (6.49 ± 2.43 nM vs non-stimulated 3.51 ± 1.23 nM, P-value < 0.05) and NO (3.28 ± 1.38 μM vs non-stimulated 2.55 ± 0.32μM, P-value < 0.05) generation. Using PPP and P-PRP stimulation in post-implantation procedures may contribute to the polarisation of macrophages towards the M2-like pro-resolving phenotype, thereby accelerating wound healing. This would also prevent implant degradation due to an excessive inflammatory process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call