Abstract

The activity of antioxidant enzymes, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as that of the mitochondrial FAD-dependent a-glycerophosphate dehydrogenase (a-GPD) in the rat interscapular brown adipose tissue (IBAT) were studied after the treatment with methimazole (MMI) for three weeks or with iopanoic acid (IOP) for five days. Besides, the mitochondrial concentration of uncoupling protein-1 (UCP-1) and the activity of catecholamine degrading enzyme monoamine oxidase (MAO) in the IBAT as well as the activity of the catecholamine synthesizing enzyme, dopamine b-hydroxylase (DBH) in rat serum were examined. Judging by the significantly enhanced level of serum DBH, which is an index of sympathetic activity, and that of IBAT MAO, the increase in MnSOD and CAT activities in the IBAT of hypothyroid (MMI-treated) rats seems to be due to elevated activity of sympathetic nervous system (SNS). However, CuZnSOD activity is not affected by SNS. On the contrary, IOP, which is a potent inhibitor of T4 deiodination into T3 producing "local" hypothyroidism, did not change either SNS activity or activities of IBAT antioxidant enzyme. However, both treatments significantly decreased IBAT UCP-1 content and a-GPD activity suggesting that the optimal T3 concentration in the IBAT is necessary for maintaining basal levels of these key mitochondrial parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.