Abstract

New Delhi metallo-β-lactamase-1 (NDM-1) is the most important and prevalent enzyme among all metallo-β-lactamases. NDM-1 can hydrolyze almost all-available β-lactam antibiotics including carbapenems, resulting in multidrug resistance, which poses an increasing clinical threat. However, there is no NDM-1 inhibitor approved for clinical treatment. Therefore, identifying a novel and potential enzyme inhibitor against NDM-1-mediated infections is an urgent need. In this study, vidofludimus was identified as a potential NDM-1 inhibitor by structure-based virtual screening and an enzyme activity inhibition assay. Vidofludimus significantly inhibited NDM-1 hydrolysis activity with a significant dose-dependent effect. When the vidofludimus concentration was 10 μg/ml, the inhibition rate and 50% inhibitory concentration were 93.3% and 13.8 ± 0.5 μM, respectively. In vitro, vidofludimus effectively restored the antibacterial activity of meropenem against NDM-1-positive Escherichia coli (E. coli), and the minimum inhibitory concentration of meropenem was decreased from 64 μg/ml to 4 μg/ml, a 16-fold reduction. The combination of vidofludimus and meropenem showed a significant synergistic effect with a fractional inhibitory concentration index of 0.125 and almost all the NDM-1-positive E. coli were killed within 12 h. Furthermore, the synergistic therapeutic effect of vidofludimus and meropenem in vivo was evaluated in mice infected with NDM-1 positive E. coli. Compared with the control treatment, vidofludimus combined with meropenem significantly improved the survival rate of mice infected with NDM-1-positive E. coli (P < 0.05), decreased the white blood cell count, the bacterial burden and inflammatory response induced by NDM-1-positive E. coli (P < 0.05), and alleviated histopathological damage in infected mice. It was demonstrated by molecular dynamic simulation, site-directed mutagenesis and biomolecular interaction that vidofludimus could interact directly with the key amino acids (Met67, His120, His122 and His250) and Zn2+ in the active site of NDM-1, thereby competitively inhibiting the hydrolysis activity of NDM-1 on meropenem. In summary, vidofludimus holds promise as anNDM-1 inhibitor, and the combination of vidofludimus and meropenem has potential as a therapeutic strategy for NDM-1-mediated infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.