Abstract

Catalytic performance of Sn/Al 2O 3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NO x by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO 2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al 2O 3 (SG) catalyst, and the maximum NO 2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NO x desorption accompanied with O 2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H 2O and SO 2 at low temperature, and the temperature window was also broadened in the presence of H 2O and SO 2, however the NO x desorption and NO conversion decreased sharply on the 300 ppm SO 2 treated catalyst, the catalytic activity was inhibited by the presence of SO 2 due to formation of sulfate species (SO 4 2−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al 2O 3 (SG) was not decreased in the presence of large oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call