Abstract

BackgroundDelamanid (Dlm) is an effective drug against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains, including Multidrug-resistant Mycobacterium tuberculosis (MDR-MTB). There are few reports on the activity and secretion of cytokines caused by Dlm on macrophages infected by MDR-MTB strains. Therefore, this article aims to observe the bactericidal activity and secretion of cytokines of the macrophages infected by MDR-MTB strains after Dlm was administered, so as to provide a basis for further perfecting the mechanism of Dlm.MethodsSamples were respectively collected to count the intracellular colony-forming unit (CFU) of macrophages infected by MDR-MTB or H37Rv strains at 4, 8, 24, and 48 h after Dlm at MIC, 10MIC, and 20MIC were administered. Samples were respectively collected to detect the level of IL-12/23 p40, TNF-α, IL-6, and IL-10 in the culture supernatant of macrophages infected by MDR-MTB or H37Rv strains at 4, 24, and 48 h after Dlm at MIC were administered. The levels of four cytokines in the culture supernatant were measured using the Luminex® 200™ (Luminex, USA) according to the manufacturer’s instructions. Data were analyzed by SPSS 25.0 software. The continuous data in normal distribution were expressed as mean ± standard deviation ( ± s) and analyzed by t or F test. P<0.05 was considered statistically significant.Results(1) After Dlm was applied to macrophages infected by MDR-MTB strains:(A) The intracellular CFU gradually decreased, reached the lowest value at 48 h, and was lower than that of Dlm before administration and infection group (P<0.05). (B) The intracellular CFU was further reduced after increasing Dlm dose to 10MIC and 20MIC, and the latter was lower than that of the former (P<0.05). (C) The intracellular CFU of MDR-MTB group was higher than that of H37Rv group at 4~48 h after administration (P<0.05). (2) After Dlm at MIC dose was applied to macrophages infected by MDR-MTB strains: (A) The level of IL-12/23 p40 at any time didn’t change compared with that of Dlm before administration (P>0.05), while the level of IL-12/23 p40 at 4 h was higher than that of the infection group (P<0.05). The levels of TNF-α at 24 and 48 h were higher than that of Dlm before administration (P<0.05), but were similar to that of the infection group (P>0.05). In addition, the levels of IL-12/23 p40 and TNF-α at any time were similar to that of the H37Rv group after administration (P>0.05). (B) The levels of IL-6 at 24 and 48 h were higher than that of Dlm before administration (P<0.05), but were similar to that of H37Rv group (P>0.05) and were lower than that of infection group (P<0.05). The level of IL-10 at any time didn’t change compared with that of Dlm before administration (P>0.05), but was lower than that of the infection group at 4~48 h and was lower than that of the H37Rv group at 24 h (P<0.05). (C) The level of IL-12/23 p40 and IL-10 didn’t change with the change of intracellular CFU (P<0.05), while the level of TNF-α and IL-6 increased with the intracellular CFU decreasing, and the increase level of TNF-α was lower than that of the infection group (P<0.05).ConclusionsDlm had strong bactericidal activity against intracellular MDR-MTB, which was time-dependent and concentration-dependent. Its bactericidal activity against intracellular MDR-MTB strains was weaker than that against drug-susceptible tuberculosis strains. Dlm might have immunomodulatory effect, inducing low expression of Th2 cytokines IL-6 and IL-10 at different times after administration.

Highlights

  • One of the most formidable challenges in modern public health is the emergence and pervasiveness of drug-resistant diseases

  • Based on sputum acid-fast staining smear, sputum Mycobacterium tuberculosis (MTB) culture, identification of bacteria type, drug sensitivity test, and Xpert MTB/RIF® assay, only 55% of tuberculosis patients can be etiology confirmed according to 2019 World Health Organization (WHO) report, while only 37% can be etiology confirmed in China [1]

  • Dlm exhibited the potent anti-tuberculosis activity against M. tuberculosis H37Rv and multidrug-resistant Mycobacterium tuberculosis (MDR-MTB) strains in macrophages

Read more

Summary

Introduction

One of the most formidable challenges in modern public health is the emergence and pervasiveness of drug-resistant diseases. Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis (MTB) resistant to both isoniazid and rifampin [1]. The drug resistance types of multidrug-resistant Mycobacterium tuberculosis (MDR-MTB) include phenotype resistance and gene resistance. Some biological methods to simulate the interaction between the host and pathogens will help to understand the drug-resistant mechanism of MDR-MTB strains, the efficacy and mechanism of new anti-tuberculosis drugs, so as to provide better treatment options of MDR-TB control [1]. There are few reports on the activity and secretion of cytokines caused by Dlm on macrophages infected by MDR-MTB strains. This article aims to observe the bactericidal activity and secretion of cytokines of the macrophages infected by MDR-MTB strains after Dlm was administered, so as to provide a basis for further perfecting the mechanism of Dlm

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.