Abstract

Cardiomyopathies are ascribed to a variety of etiologies, present with diverse clinical phenotypes, and lack disease-modifying treatments. Mounting evidence implicates dysregulated activin receptor signaling in heart disease and highlights inhibition of this pathway as a potential therapeutic target. Here, we explored the effects of activin ligand inhibition using ActRIIB:ALK4-Fc, a heterodimeric receptor fusion protein, in two mechanistically distinct murine models of cardiomyopathy. Treatment with ActRIIB:ALK4-Fc significantly improved systolic or diastolic function in cardiomyopathy induced by neuromuscular disease or diabetes mellitus. Moreover, ActRIIB:ALK4-Fc corrected Ca2+ handling protein expression in diseased heart tissues, suggesting that activin signaling inhibition could alleviate cardiomyopathies in part by rebalancing aberrant intracellular Ca2+ homeostasis-a common underlying pathomechanism in diverse heart diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.