Abstract

Five yeast enzymes synthesizing various glycerophospholipids belong to the CDP-alcohol phosphatidyltransferase (CAPT) superfamily. They only share the so-called CAPT motif, which forms the active site of all these enzymes. Bioinformatic tools predict the CAPT motif of phosphatidylinositol synthase Pis1 as either ER luminal or cytosolic. To investigate the membrane topology of Pis1, unique cysteine residues were introduced into either native or a Cys-free form of Pis1 and their accessibility to the small, membrane permeating alkylating reagent N-ethylmaleimide (NEM) and mass tagged, non-permeating maleimides, in the presence and absence of non-denaturing detergents, was monitored. The results clearly point to a cytosolic location of the CAPT motif. Pis1 is highly sensitive to non-denaturing detergent, and low concentrations (0.05%) of dodecylmaltoside change the accessibility of single substituted Cys in the active site of an otherwise cysteine free version of Pis1. Slightly higher detergent concentrations inactivate the enzyme. Removal of the ER retrieval sequence from (wt) Pis1 enhances its activity, again suggesting an influence of the lipid environment. The central 84% of the Pis1 sequence can be aligned and fitted onto the 6 transmembrane helices of two recently crystallized archaeal members of the CAPT family. Results delineate the accessibility of different parts of Pis1 in their natural context and allow to critically evaluate the performance of different cysteine accessibility methods. Overall the results show that cytosolically made inositol and CDP-diacylglycerol can access the active site of the yeast PI synthase Pis1 from the cytosolic side and that Pis1 structure is strongly affected by mild detergents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.