Abstract

In [FeFe]-hydrogenases, the H cluster (hydrogen-activating cluster) contains a di-iron centre ([2Fe]H subcluster, a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) group) covalently attached to a cubane iron-sulphur cluster ([4Fe-4S]H subcluster). The Cys-thiol functions as the link between one iron (called Fe1) of the [2Fe]H subcluster and one iron of the cubane subcluster. The other iron in the [2Fe]H subcluster is called Fe2. The light sensitivity of the Desulfovibrio desulfuricans enzyme in a variety of states has been studied with infrared (IR) spectroscopy. The aerobic inactive enzyme (H(inact) state) and the CO-inhibited active form (H(ox)-CO state) were stable in light. Illumination of the H(ox) state led to a kind of cannibalization; in some enzyme molecules the H cluster was destroyed and the released CO was captured by the H clusters in other molecules to form the light-stable H(ox)-CO state. Illumination of active enzyme under 13CO resulted in the complete exchange of the two intrinsic COs bound to Fe2. At cryogenic temperatures, light induced the photodissociation of the extrinsic CO and the bridging CO of the enzyme in the H(ox)-CO state. Electrochemical redox titrations showed that the enzyme in the H(inact) state converts to the transition state (H(trans)) in a reversible one-electron redox step (E (m, pH 7) = -75 mV). IR spectra demonstrate that the added redox equivalent not only affects the [4Fe-4S]H subcluster, but also the di-iron centre. Enzyme in the H(trans) state reacts with extrinsic CO, which binds to Fe2. The H(trans) state converts irreversibly into the H(ox) state in a redox-dependent reaction most likely involving two electrons (E (m, pH 7) = -261 mV). These electrons do not end up on any of the six Fe atoms of the H cluster; the possible destiny of the two redox equivalents is discussed. An additional reversible one-electron redox reaction leads to the H(red) state (E (m, pH 7) = -354 mV), where both Fe atoms of the [2Fe]H subcluster have the same formal oxidation state. The possible oxidation states of Fe1 and Fe2 in the various enzyme states are discussed. Low redox potentials (below -500 mV) lead to destruction of the [2Fe]H subcluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.