Abstract
Colorectal cancer (CRC) is the third most common solid tumor worldwide and has shown resistance to several immunotherapies, particularly immune checkpoint blockade therapy, which is effective in many other types of cancer. Our previous studies indicated that the active fraction of Garcinia yunnanensis (YTE-17), had potent anticancer activities by regulating multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of CRC is limited. This study tested the effects of YTE-17 on colon cancer development in vivo by using two murine models: the carcigenic azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC model and a genetically induced model using ApcMin/+ mice. Here, the tumor load, tumor number, histology, and even some oncogenes were used to evaluate the effect of YTE-17. The intragastric administration of YTE-17 for 12weeks significantly decreased CRC incidence, tumor number and size, immunity, and some tumor-associated macrophage (TAM) markers, including CD206, Arg-1, IL-10, and TGF-β. Importantly, the macrophages depletion by clodronate (CEL) also played a role in reducing the tumor burden and inhibiting tumor development, which were not affected by YTE-17 in the ApcMin/+ mice. Moreover, the YTE-17 treatment attenuated CRC cell growth in a co-culture system in the presence of macrophages. Consistently, YTE-17 effectively reduced the tumor burden and macrophage infiltration and enhanced immunity in the AOM/DSS and ApcMin/+ colon tumor models. Altogether, we demonstrate that macrophages in the microenvironment may contribute to the development and progression of CRC cells and propose YTE-17 as a new potential drug option for the treatment of CRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.