Abstract

DNA-damage-induced SOS mutations arise when Escherichia coli DNA polymerase (pol) V, activated by a RecA nucleoprotein filament (RecA*), catalyses translesion DNA synthesis. Here we address two longstanding enigmatic aspects of SOS mutagenesis, the molecular composition of mutagenically active pol V and the role of RecA*. We show that RecA* transfers a single RecA-ATP stoichiometrically from its DNA 3'-end to free pol V (UmuD'(2)C) to form an active mutasome (pol V Mut) with the composition UmuD'(2)C-RecA-ATP. Pol V Mut catalyses TLS in the absence of RecA* and deactivates rapidly upon dissociation from DNA. Deactivation occurs more slowly in the absence of DNA synthesis, while retaining RecA-ATP in the complex. Reactivation of pol V Mut is triggered by replacement of RecA-ATP from RecA*. Thus, the principal role of RecA* in SOS mutagenesis is to transfer RecA-ATP to pol V, and thus generate active mutasomal complex for translesion synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.