Abstract

The class I ribonucleotide reductase from Chlamydia trachomatis uses a stable MnIV/FeIII cofactor to initiate nucleotide reduction by a free-radical mechanism. The enzyme provides the first example both of a Mn-dependent ribonucleotide reductase and of a Mn/Fe redox cofactor. In this work, we have used variable-field Mossbauer spectroscopy to demonstrate that the active cofactor has an S = 1 ground state due to antiferromagnetic coupling between the MnIV (SMn = 3/2) and high-spin FeIII (SFe = 5/2) sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.